Average Ratings 0 Ratings
Average Ratings 2 Ratings
Description
Deep learning frameworks like TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have significantly enhanced the accessibility of deep learning by simplifying the design, training, and application of deep learning models. Fabric for Deep Learning (FfDL, pronounced “fiddle”) offers a standardized method for deploying these deep-learning frameworks as a service on Kubernetes, ensuring smooth operation. The architecture of FfDL is built on microservices, which minimizes the interdependence between components, promotes simplicity, and maintains a stateless nature for each component. This design choice also helps to isolate failures, allowing for independent development, testing, deployment, scaling, and upgrading of each element. By harnessing the capabilities of Kubernetes, FfDL delivers a highly scalable, resilient, and fault-tolerant environment for deep learning tasks. Additionally, the platform incorporates a distribution and orchestration layer that enables efficient learning from large datasets across multiple compute nodes within a manageable timeframe. This comprehensive approach ensures that deep learning projects can be executed with both efficiency and reliability.
Description
Keras is an API tailored for human users rather than machines. It adheres to optimal practices for alleviating cognitive strain by providing consistent and straightforward APIs, reducing the number of necessary actions for typical tasks, and delivering clear and actionable error messages. Additionally, it boasts comprehensive documentation alongside developer guides. Keras is recognized as the most utilized deep learning framework among the top five winning teams on Kaggle, showcasing its popularity and effectiveness. By simplifying the process of conducting new experiments, Keras enables users to implement more innovative ideas at a quicker pace than their competitors, which is a crucial advantage for success. Built upon TensorFlow 2.0, Keras serves as a robust framework capable of scaling across large GPU clusters or entire TPU pods with ease. Utilizing the full deployment potential of the TensorFlow platform is not just feasible; it is remarkably straightforward. You have the ability to export Keras models to JavaScript for direct browser execution, transform them to TF Lite for use on iOS, Android, and embedded devices, and seamlessly serve Keras models through a web API. This versatility makes Keras an invaluable tool for developers looking to maximize their machine learning capabilities.
API Access
Has API
API Access
Has API
Integrations
TensorFlow
Activeeon ProActive
BentoML
Cameralyze
Dataiku
Flower
GPUEater
Gradient
Horovod
Polyaxon
Integrations
TensorFlow
Activeeon ProActive
BentoML
Cameralyze
Dataiku
Flower
GPUEater
Gradient
Horovod
Polyaxon
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
IBM
Founded
1911
Country
United States
Website
developer.ibm.com/open/projects/fabric-for-deep-learning-ffdl/
Vendor Details
Company Name
Keras
Country
United States
Website
keras.io
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization